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Abstract
The aim of our project with the Medical Image Processing Lab was to find out if splitting patients into subgroups based
on brain anatomical measurements obtained from magnetic resonance images and developing a prediction model for each
subgroup was more accurate for predicting biological age than a global prediction model. We were provided with two
datasets comprised of volumetric measurements of brain areas, the age and the gender for each patient, and found out that

subgrouping improved prediction accuracy.

I Introduction

Our project consisted in developing a model from two data
sets in order to predict the age of patients based on brain
anatomical volumetric measurements. As of now, the most
accurate age predictions based on anatomical features are
around 3 or 4 years [1] [3]; we attempted to attain higher
accuracy throughout this project.

The aim of the project was two-fold. In the first place, we
reduced the dimensionality of our features to keep only the
most relevant features and then tested several models to de-
termine the age. Then, we searched for subgroups of patients
by clustering the data points, trained and tested models on
each subgroup separately. Our initial hypothesis was that the
second method (clustering the patients into subgroups then
training and testing different models on each cluster individ-
ually) would be more precise in the age prediction process.

II Data Analysis

a. Data Set Description

We were provided with two datasets for this project, which
were sent to us by the MIPLab:

e Dataset 1: a set of 335 features for 133 patients aged
between 68 and 85 years. The volume measurements
were given in voxels per AAL.

e Dataset 2: a set of 175 features for 231 patients aged
between 49 and 73. The volume measurements were
given in both voxels per AAL and millimeters cubed.

The number of patients was quite small in both datasets,
and we came to the conclusion that our models would be
highly affected by the small size of the samples and would
most likely overfit. For better results, it would be a good
choice to use much larger datasets.

We thought of merging the datasets according to match-
ing brain areas to increase the number of samples. However,
Dr. Haller, the radiologist who co-supervised the project,
advised us not to, since the data acquisition pipelines where
not identical, which could lead to false results.

Moreover, as shown in
Fig [I] the ages of the pa- ge distriut
tients ranged from 68 to 85
years in the first data set
and 49 to 73 in the sec- .
ond. The second dataset °
covers a wider range of
ages, we then determined
that our results could be =
more accurate using the
latter since we would like Figure 1: Age distribution of
to learn from anatomical datasets 1 and 2
changes due to aging. It is important to have baseline values
(those for the younger patients in the sample) to determine
the relevant changes in brain anatomy that occur during the
aging process.

of datasets

b. Data Cleaning

Some feature columns comprised of meaningless values,
such as columns containing only zeros. These entries were
removed. In other feature columns, only a few entries were
equal to zero. We chose to replace those entries by the mean
value of the corresponding feature column.

c. Splitting into Training and Test Sets

In order to train and test our prediction models, we needed to
divide the datasets into training sets and test sets. We gener-
ated training and test sets by randomly assigning 70% of the
data points to the training set and 30% to the test set.

d. Data Standardization

Standardization is an important step in machine learning and
reduces the risks of feature matrix ill-conditioning. We im-
plemented a function to standardize the numerical features of
our data sets by subtracting the training mean and dividing by
the training standard deviation for each feature column indi-
vudually. The data must be standardized before dimension-
ality reduction, clustering classification and model fitting.
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III Feature engineering
a. Dimensionality Reduction

After analyzing the correlation between each feature and the
labels (ages), we decided to reduce the dimensions of our
dataset using different methods since we did not see any ob-
vious correlations between the features and the ages of the
patients.

Principal Component Analysis

By analyzing the princi-
pal components of our data 0s
sets, we were able to re-
duce the dimensions to a
few features (approximately
20 features) by selecting
the principal components
which would allow us to
keep the biggest part of
the information contained
in the dataset. By observ-
ing Fig. 2l we noticed a dif-
ference between datasets 1
and 2: the first 20 principal
components explain 88% of the training variance among pa-
tients in dataset 2 and only 64% in dataset 1. Moreover, the
first principal component for dataset 2 explains 61% of the
variance on its own.
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Figure 2: Cumulative vari-
ance according to the num-
ber of principal components
for datasets 1 and 2

Partial Least Squares Regression

After noticing that there was a lot of overlap between points
in the subgroups we formed using principal components of
our data (see section [[V), we decided to implement partial
least squares regression in order to reduce the dimensions
of the datasets. PLS is a regression method based on covari-
ance. In this case, we exploited the covariance of the features
with the age to reduce the number of features.

b. Filtering
MI Score

We compute the MI scores to measure the connection be-
tween a feature and the age. High MI score values represent
a closer connection between the feature and the label, indi-
cating the level of importance of the feature for model train-
ing. However, low MI scores, such as zero, indicate a weak
connection between the feature and the label. By computing
this score, we isolated the most important features based on
a threshold value.

Anatomical relevance

We inspired ourselves from the findings described in the pa-
per [2] to extract features corresponding to the brain areas
prone to atrophy during aging. We then trained models on
this restrained dataset. Results were, however, not very con-
clusive.
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Lasso

The Lasso method is a regression technique that selects the
most relevant variables in a prediction model using L1 regu-
larisation. It sets some of the regression coefficients to zero
in order to obtain a simpler model that is easier to inter-
pret, while maintaining good prediction accuracy. The Lasso
method is particularly useful in situations where there are a
large number of variables and some of them are not very rel-
evant for the prediction of the target variable.

IV Sample Clustering

The aim of the project was to determine whether division of
the patients into subgroups according to their brain anatom-
ical features would increase the accuracy of our predictions.
In the subgroup formation, we only took into consideration
the brain area volumetric features and genders of the pa-
tients. The biological ages of the patients were left aside in
the clustering process and kept as labels for later training.

We thought clustering would allow us to make more
accurate predictions of biological age based on different
brain aging patterns. In fact, we wanted to see if we would
find subgroups of patients whose brain features revealed ab-
normally advanced brain aging when compared with their
biological age, and separate these patients from the rest to
predict their biological age more accurately with a targeted
model training process. Subgroup division could be useful if
such machine learning models were used to predict and diag-
nose age-related brain diseases such as Alzheimer’s disease.

Our idea was to first find an efficient way of clustering
the data points, then to test several models on each cluster
separately. We implemented k-means and Gaussian Mixture
Models to cluster our data and compared the characteristics
of the subgroups we found with both clustering methods.

k-Means

K-means is a clustering algorithm that partitions a set of data
into K clusters by minimizing the within-cluster variance. It
works by iteratively assigning each data point to the cluster
whose center is closest and recalculating the centers of each
cluster as the mean of the data points in that cluster. K-means
is often used for data segmentation and image compression,
but it requires specifying the number of clusters in advance
and can be sensitive to outliers or complex data structures.

Silhouette Scores
Silhouette Scores

(a) K-Means (b) GMM

Figure 3: Silhouette score plots of K-Means and GMM mod-
els
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Analysis of the silhouette score, which indicates the
proximity of data points to the center of the cluster they be-
long to as well as the inter-cluster distances, was useful in
determining the number of clusters to retain. The silhouette
score was high for K=3 clusters (Fig[3a) and we observed an
inflection point at K=3 using the elbow method, a method
based on the evaluation of the distortion score according to
the number of clusters. Thus, we concluded that choosing
three clusters would be best; in fact, more than three clusters
may be too sensitive to outliers.

Gaussian Mixture Model

The Gaussian Mixture Model (GMM) is a probabilistic clas-
sification model that describes a set of data in terms of mul-
tiple Gaussians. Each Gaussian model is defined by its mean
and variance and is associated with a weight representing the
probability of selecting that Gaussian model when generat-
ing data.

We implemented GMM and obtained new clusters for our
data. The silhouette score for GMM is highest for K=2 clus-

ters (Fig[3b).

Subgroup Formation

In order to determine which clustering method to use, we
analyzed the distribution of data points in the clusters with
three or two clusters using GMM or K-means. Ideally, we
aimed to have approximately one third of all data points in
each cluster when dividing the sample data into three sub-
groups and one half of all data points in each cluster when
dividing into two subgroups.

As can be observed on FigH] the data points are highly
unequally distributed among clusters with GMM cluster-
ing, for both 2-cluster and 3-cluster models. In general,
we observed high disproportions between clusters and in
some cases absence of one cluster with the GMM clustering
method. For example, in dataset 2 with a 3-cluster GMM
model, cluster 1 is highly under-represented in the training
set and absent in the test set ("Raw" column in Subﬁg@ b).
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Figure 4: Clusters distribution of Lasso, PLS, PCA decom-
positions and raw data on dataset 2
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Moreover, Fig[5| shows cluster densities and the range
of patient ages spanned by each cluster. GMM clusters
have noticeably unequal densities, thus these would pro-
duce biased subsets and lead to inaccurate model training
due to the abberantly small sizes of some clusters. Clus-
ter distributions using K-means were not ideal, but we
judged that they were much better than the ones obtained
with GMM. Therefore, we decided to cluster the samples
into three subgroups with K-means clustering. Similar phe-
nomenons concerning the cluster distributions were observed
in both datasets.

Age distribution after GMM clusterization (N=3)
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Figure 5: Age distribution of GMM and KMeans clusteriza-
tion for 3 clusters on dataset 2

V Global Model Prediction
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Figure 6: Diagram showing the construction and validation
of the global prediction model.

Each of the following models was trained and tested on the
entire datasets according to the workflow shown on Fig[6] us-
ing GridSearchCV for parameter tuning: Elastic Net Regres-
sion, Random Forest Regression, Support Vector Regression,
AdaBoost Regression and K-Nearest Neighbors Regression
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VI Model Prediction on Subgroups ettt

ran £ i iy i
After clustering the samples into subgroups as explained in 5 3 N I j : b ofiem]
Section [[V] we tried to train local models, one per cluster as ] Fa
shown on Fig. [7} and compared them to the global model. If wotewe v oot “irotimures v M
locally the predictions of the global model were better than =~ e ‘% o [ O [ O [ PO o
the predictions of the local one, we used the global model for g L] [ e I

this cluster sample. We tried to optimize the R2 and MAE ) ) ) ) o
scores. For pseudocode of MAE and R2 optimization see Figure 7: Diagram showing the construction and validation

and B2l of the local prediction models.
In short, the optimization is all about selecting,

for each cluster, the best prediction model between local and

global models. The optimized results correspond to the re-

sults of the concatenation of the predictions made by the best

model (local or global) for each cluster.

VII Results

According to our results, the optimization process described in Section |VI| was most effective on dataset 1 (see Table|l)) with
an R2 score gain of 45% (+0.1) and a MAE score decrease of 10% (-0.26 years) obtained with optimized models compared
to the best global results, while on dataset 2 (see Table @) local results, and thus optimized models, were not better than the
best global results.

[ | Decomposition | Filtering | Clustering [  Model [ Criterion | TrainR2 | TestR2 [ Train MAE [ Test MAE |
Global PCA MI_Score | KMeans (n=3) | ElasticNet R2 0.46 0.210 1.94 2.670
PCA MI_Score | KMeans (n=3) | ElasticNet MAE 0.43 0.200 1.84 2.621
Optimized PCA None KMeans (n=3) - R2 0.571 0.304 1.692 2.401
P PCA None KMeans (n=3) - MAE 0.737 0.289 1.179 2.361

Table 1: Best global and optimized models on dataset 1 with their corresponding scores

[ [ Decomposition [ Filtering [ Clustering [ Model [ Criterion [ Train R2 [ Test R2 [ Train MAE [ Test MAE l
Global and optimized Raw None KMeans (n=3) SVR R2 0.455 0.255 2.479 3.673
P Raw None KMeans (n=3) | ElasticNet MAE 0.460 0.252 2.797 3.649

Table 2: Best global and optimized models on dataset 2 with their corresponding scores

VIII Conclusion and Future Improvements for Age Prediction Accuracy

To conclude, subgrouping the patients yielded interesting results concerning the accuracy of age prediction. Generally, al-
though the difference in accuracy was not striking, we were able to obtain slightly more accurate age predictions by clustering
and fitting models to each cluster separately than by fitting models trained on the entire dataset.

It is important to mention that the datasets we were provided with contained weaknesses, which resulted in high risks of
model overfitting. The sizes of the datasets were quite small, which proved to be an issue especially when we divided the
data points into even smaller subsets. A convenient method to increase the size of the datasets would have been to combine
both. However, the problem in image processing data analysis is that it is not good practice to merge datasets that were
acquired with different scanners in the case of MR imaging, due to the different acquisition parameters (field strength, flip
angle, repetition time, image weighting, etc) that influence the feature measurements. If larger datasets were to be used for
future improvements of the age prediction model development, the same scanning conditions would have to be applied for
acquisition of data from more patients.

In addition, it would be interesting to acquire data from patients spanning a wider age range. In our datasets, patient ages
ranged between 49 and 85 years old. Hence, our results were biased due to the lack of a baseline to quantify age-related
anatomical features. Acquiring data from younger patients could potentially yield more accurate results.

To develop a more accurate subgroup it could also be useful to have multiple samples from a same patient but at different
ages in order to develop aging pattern from it and thus a subgroup.
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2| 2| £ 5 2 g o |2 |2
o = ] 5 E 3 E g z £ =
S |22 < B 2 2 g 3 2 3 Z
A |E |0 |a = o) = £ & = = &
Global Global R2 AdaBoost n estimators=181, random state=123 0.93 0.07 0.73 2.78
Global | MAE | KNN n neighbors=4 0.73 -0.0 1.34 | 2.73
a Cluster 0 Local R2 AdaBoost n estimators=181, random state=123 0.82 -0.28 0.78 1.99
) \'CL ) Local MAE KNN n neighbors=4 0.57 -1.73 1.18 2.40
9 § 2 Cluster 1 Local R2 KNN n neighbors=8 0.57 0.30 2.00 2.55
~ E 54 Local MAE | KNN n neighbors=8 0.57 0.30 2.00 | 2.55
= Cluster 2 Local R2 AdaBoost n estimators=181, random state=123 0.90 0.09 0.84 2.77
% . Local MAE RandomPForest max depth=16, n estimators=50 0.94 0.054 0.61 2.65
Optimized |— R2 - - 0.72 0.18 1.34 ] 2.58
- MAE - - 0.71 0.11 1.34 2.58
Global Global | R2 Elastic Net alpha=0.825, 11 ratio=0.0, max iter=5000 0.44 0.20 1.97 | 2.64
Global MAE ElasticNet alpha=0.825, 11 ratio=0.0, max iter=5000 0.44 0.20 1.97 2.64
@ Cluster 0 Local R2 Elastic Net alpha=0.825, 11 ratio=0.30, max iter=5000 0.52 0.38 1.92 222
g N Local MAE Elastic Net alpha=0.825, 11 ratio=0.30, max iter=5000 0.52 0.38 1.92 222
6 % \é Cluster 1 Local R2 RandomForest | max depth=14, n estimators=30 0.87 0.02 0.91 2.25
9 Z 54 Local MAE RandomForest | max depth=14, n estimators=30 0.87 0.02 0.91 2.25
= Cluster 2 Local R2 KNN n neighbors=4 0.49 0.13 1.57 2.79
M ) Local MAE AdaBoost learning rate=0.1, n estimators=181, random state=123 0.94 0.11 0.63 2.60
Optimized |— R2 - - 0.57 0.30 1.69 | 2.40
- MAE | - - 0.74 0.29 1.18 | 2.36
0 rl;la Global Global | R2 0.46 0.21 1.94 | 2.67
5 § e Global | MAE 0.43 0.20 1.84 | 2.62
I R
s ﬁ Optimized | R2 0.56 0.28 1.69 | 2.50
— M - MAE 051 | 030 | 1.84 | 246
3 Global Global | R2 RandomForest | max depth=10, n estimators=50 0.85 0.07 0.99 | 2.90
g Global | MAE | KNN n neighbors=6 0.37 0.03 2.01 2.87
[a) a Cluster 0 Local R2 RandomForest max depth=13, n estimators=70 0.88 -0.07 0.96 2.84
[ i Local MAE RandomPForest max depth=13, n estimators=70 0.88 -0.07 0.96 2.84
z g \é Cluster 1 Local R2 RandomForest | max depth=19, n estimators=50 0.85 0.18 1.04 | 2.49
~ 4 s Local MAE | AdaBoost learning rate=0.1, n estimators=161, random state=123 | 0.99 0.10 0.25 | 2.29
= Cluster 2 Local R2 SVR C=1000.0, gamma=1.83e-05 0.97 0.22 022 | 244
M ) Local MAE | SVR C=1000.0, gamma=1.83e-05 0.97 0.22 022 | 244
Optimized |— R2 - - 0.91 0.22 0.60 | 2.52
- MAE | - - 0.96 0.19 0.33 | 245
Global Global | R2 KNN 0.58 0.05 1.72 | 2.83
Global | MAE | KNN 0.58 0.05 1.72 ] 2.83
Q a Cluster 0 Local R2 AdaBoost n estimators=21, random state=123 1.00 0.06 0.08 3.71
T 1 Local MAE | AdaBoost n estimators=21, random state=123 1.0.0 | 0.06 0.08 | 3.71
z ;:: \é/ Cluster 1 Local R2 Elastic Net alpha=0.16, 11 ratio=0.0, max iter=5000 0.94 0.29 0.60 2.38
~ b 54 Local MAE | Elastic Net alpha=0.16, 11 ratio=0.0, max iter=5000 0.94 0.29 0.60 | 2.38
2 = Cluster 2 Local R2 Elastic Net alpha=0.83, 11 ratio=0.0, max iter=5000 0.79 0.04 0.94 2.56
~ o i Local MAE Elastic Net alpha=0.83, 11 ratio=0.0, max iter=5000 0.79 0.039 0.94 2.56
Optimized |— R2 - - 0.82 0.25 1.00 | 2.66
- MAE | - - 0.77 0.20 1.16 | 2.65
’<I\|I\ Global Global R2 Elastic Net alpha=0.83, 11 ratio=0.0, max iter=5000 0.44 0.20 1.97 2.64
5 % % Global | MAE | Elastic Net alpha=0.83, 11 ratio=0.0, max iter=5000 0.44 0.20 1.97 | 2.64
[ Z ]
g Optimized | R2 0.61 0.22 139 | 253
& - MAE 0.61 | 022 | 1.39 | 2.53
° c’I\F Global Global R2 AdaBoost n estimators=181, random state=123 0.93 0.07 0.73 2.78
% § g Global MAE KNN n neighbors=4 0.73 -0.0 1.34 2.74
A = g Optimized | R2 0.93 0.08 0.73 | 2.78
M - MAE 073 | -0.03 | 135 | 274
Q| a Global | R2 SVR C=1000.0, gamma=6.16e-05 0.34 0.23 292 | 3.68
S i Global
E E e Global | MAE | SVR C=1000.0, gamma=6.16e-05 0.34 0.23 292 | 3.69
Rl =
S § Optimized | R2 - - 0.98 0.27 | 2.54
51 - MAE | - - 098 | 019 | 027 | 2.54

Table 3: Training and test scores of the best global and local models, as well as the optimized models, for several combinations
of decomposition, filtering and clustering methods on dataset 1. Legend: light red : the local model is worse than the global

model for the cluster; [light green : the local model is better than the global model for the cluster; [orange : the best global

model results; - : the optimized model is worse than the global model; | green : the optimized model is better than the

global model.
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Z o0 < 53]
AFAE g . 2| g | 2%
|5 | % 2 5 g g P % £ Z
2 = = ol S = S S g 3 5 3
Q| & |0 |« = O = & = &= &= =
Global Global R2 AdaBoost n estimators=181, random state=123 0.85 0.15 1.55 3.84
Global | MAE | RandomForest | max depth=19, n estimators=50 0.93 0.13 098 | 3.84
a Cluster 0 Local R2 AdaBoost learning rate=0.5, n estimators=181 0.96 0.24 0.71 3.63
L L ) Local MAE | RandomForest | max depth=19, n estimators=50 0.94 0.13 0.89 | 3.60
‘ﬁ g E Cluster 1 Local R2 AdaBoost n estimators=181, random state=123 0.84 0.16 1.63 3.60
o — g ) Local MAE RandomForest max depth=19, n estimators=50 0.94 0.16 0.97 3.56
= = Cluster 2 Local R2 KNN n neighbors=7 0.62 0.22 2.25 4.15
M Local MAE AdaBoost n estimators=181, random state=123 0.91 0.19 1.15 4.06
Optimized - R2 - - 0.78 0.22 1.68 3.84
- MAE | - - 0.93 0.16 1.04 | 3.78
Global Global R2 AdaBoost n estimators=181 0.85 0.17 1.54 3.81
Global MAE AdaBoost n estimators=181 0.85 0.17 1.54 3.82
a Cluster 0 Local R2 KNN n neighbors=4 0.65 0.20 2.36 3.87
L . Local MAE AdaBoost learning rate=0.5, n estimators=181 0.96 0.20 0.77 3.81
9 % z Cluster 1 Local R2 RandomForest max depth=10, n estimators=70 0.90 0.13 0.95 4.40
[ Z. g Local MAE RandomForest max depth=10, n estimators=70 0.90 0.13 0.95 4.40
5 Cluster 2 Local R2 RandomForest max depth=8, n estimators=50 0.91 0.14 1.17 3.29
i Local MAE AdaBoost learning rate=0.5, n estimators=121, random state=123 0.94 0.10 1.03 3.27
Optimized - R2 - - 0.88 0.20 1.38 3.82
- MAE | - - 0.86 0.17 1.55 3.82
Global Global R2 SVR C=215.44, gamma=6.15e-05 0.18 0.19 3.38 3.87
Global MAE | SVR C=215.44, gamma=6.15e-05 0.18 0.19 3.38 3.87
~ a Cluster 0 Local R2 AdaBoost learning rate=0.1, n estimators=101 0.92 0.25 1.13 391
2 [ ; Local MAE RandomForest max depth=1, n estimators=90 0.35 0.25 2.84 2.68
8 é % \é/ Cluster 1 Local R2 SVR C=10.0, gamma=2.33e-3 0.24 0.11 3.35 3.74
8 g | z S Local MAE | KNN n neighbors=19 0.05 0.11 376 | 3.89
= Cluster 2 Local R2 AdaBoost n estimators=141 0.89 0.30 1.32 3.76
» ” Local MAE AdaBoost learning rate=0.5, n estimators=141 0.89 0.24 1.39 4.67
Optimized - R2 - - 0.68 0.24 1.91 374
- MAE | - - 0.68 0.24 1.91 3.74
Global Global R2 SVR C=1000.0, gamma=1.83e-05 0.45 0.25 247 | 3.67
Global MAE Elastic Net alpha=0.82, 11 ratio=0.0, max iter=5000 0.46 0.25 2.80 3.65
a Cluster 0 Local R2 Elastic Net alpha=4.21, 11 ratio=0.0, max iter=5000 0.48 -0.56 2.71 4.95
L ; Local MAE Elastic Net alpha=4.21, 11 ratio=0.0, max iter=5000 0.48 -0.56 2.71 4.95
z % Z Cluster 1 Local R2 AdaBoost learning rate=0.1, n estimators=121 0.98 0.33 0.59 | 3.62
~ Z g Local MAE | Elastic Net alpha=0.82, 11 ratio=0.0, max iter=5000 0.80 0.29 1.71 3.55
= Cluster 2 Local R2 RandomForest max depth=17, n estimators=70 0.83 0.08 1.53 4.08
M ) Local MAE | RandomForest max depth=17, n estimators=70 0.83 0.08 1.53 4.08
Optimized - R2 - - 0.45 0.25 247 | 3.67
- MAE | - - 0.46 0.25 2.80 | 3.65
Global Global R2 SVR C=1000.0, gamma=6.15e-05 0.34 0.23 292 | 3.68
Global | MAE | SVR C=1000.0, gamma=6.15¢e-05 0.34 0.23 292 | 3.69
~ | & Local R2 SVR C=46.41, gamma=7.84¢-3 0.60 0.18 1.58 3.33
T | L | Cluster0 T MAE [ SVR C=2641, gamma=7.89e3 060 | 0.08 | 158 | 3.33
T L A1, gamma=7.84¢ . . . .
2| = \g Cluster 1 Local R2 KNN n neighbors=2 0.83 0.30 148 | 3.34
& 2 g Local MAE | Elastic Net alpha=0.82, 11 ratio=0.0, max iter=5000 0.48 0.24 2774 | 3.09
§ = Cluster 2 Local R2 SVR C=2.15, gamma=8.85¢-2 0.39 0.17 274 1 431
» § Local MAE SVR C=2.15, gamma=8.85e-2 0.39 0.17 2.74 431
Optimized - R2 - - 0.43 0.24 2.60 | 3.73
- MAE | - - 0.39 0.23 272 | 3.67

Table 4: Training and test scores of the best global and local models, as well as the optimized models, for several combinations
of decomposition, filtering and clustering methods on dataset 2. Legend: light red : the local model is worse than the global

model for the cluster; [light green : the local model is better than the global model for the cluster; [orange : the best global

model results; - : the optimized model is worse than the global model; [gfeéen : the optimized model is better than the

global model.
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B Algorithms

Algorithm 1 MAE Model Cluster Optimization

procedure MAE_OPTIMIZATION(n, x, y, global, locals)
fori<—Oton—1do
X < Xeluster=i
Y < Yeluster=i
local + locals(i) > Select cluster’s local model
predictycq; < PREDICT(local, x,y)
predictyiopar <+ PREDICT(global, x,y)
MAE pcq1 < MAE(yaprediCtlocul)
MAEopar < MAE(y, predictgiopar)
if MAE) ca1 < MAEglgbal then
BEST_MODEL(i) < local
else
BEST_MODELC(i) < global
end if
end for
return BEST_MODELS
end procedure

Algorithm 2 R2 Model Cluster Optimization

procedure R2_OPTIMIZATION(n, X, y, global, locals)
fori< Oton—1do
X <= Xeluster=i
Y £ Yeluster=i
local < locals(i) > Select cluster’s local model
predictyyeqr < PREDICT(local, x,y)
predictyiopa < PREDICT(global, x,y)
R2jpcat < R2(y, predictipear)
Rzglobal + R2(y, prediCtglobal)
if R2;pcar > R2globa1 then
BEST_MODELC(i) « local
else
BEST_MODEL(i) < global
end if
end for
return BEST _MODELS
end procedure
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