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Abstract
Understanding the change between two images
is a key task in computer vision, encompassing
sub-tasks such as change detection (CD) and
answering questions (VQA) about that change,
its causes, and consequences. A primary ap-
plication domain is remote sensing using satel-
lite images, particularly for disaster relief, ur-
ban tracking, agricultural development, and de-
forestation monitoring. Current datasets often
focus on urban changes, with disaster relief
datasets being limited in size and scope.

In this research, we propose a comprehensive
dataset of paired multispectral aerial images
with manually annotated pixel-level disaster-
specific changes for over 60 disasters. This
dataset is enriched with auxiliary information,
including fine-grained terrain data from Open-
StreetMap, ESA WorldCover, and textual infor-
mation from news articles and disaster relief
reports from ReliefWeb.

The primary focus of this work is on the task
of change detection by providing baselines for
this task and discussing the intensive efforts
and challenges involved in creating and annotat-
ing the dataset. It also highlights the potential
of integrating diverse data sources to enhance
disaster analysis and sets the stage for future
work in expanding the dataset and exploring
additional tasks such as image classification,
semantic segmentation, visual question answer-
ing, and report generation. The datasets and
models will be made public to facilitate transfer
learning and enable rapid progress in remote
sensing applications.1

1 Introduction

Change detection in remote sensing imagery plays
a pivotal role in disaster response and environmen-
tal monitoring. The ability to accurately identify

*Supervisor
†Professor
1Code, datasets and pre-trained models are

available at https://github.com/epfl-nlp/
disaster-change-captioning

and analyze changes in imagery before and after an
event can significantly enhance disaster prepared-
ness and recovery efforts. While various datasets
and models exist for urban change detection, the
domain of disaster response requires specialized
approaches due to the unique nature of the data
and the critical importance of timely and precise
analysis. This study leverages a novel multimodal
dataset, integrating multispectral aerial images with
auxiliary data sources including terrain information
and disaster-specific textual reports, to develop and
evaluate models for disaster response tasks.

2 Related Work

2.1 Datasets

Natural disaster datasets can include various types
of images such as ground-level images, satellite
imagery, and aerial imagery (UAV). Each type of
imagery offers unique advantages and challenges
for disaster analysis.

(Rahnemoonfar et al., 2021) propose FloodNet,
which consists of high-resolution images captured
only after flood disasters. FloodNet supports three
tasks: classification (binary: flooded or not), se-
mantic segmentation (10 classes specific to flood
disasters), and visual question answering (VQA).
The dataset includes approximately 4500 question-
image pairs categorized into four groups: “Simple
Counting”, “Complex Counting”, “Yes/No”, and
“Condition Recognition”. Additionally, 2343 im-
ages are annotated with 9 classes, such as building-
flooded, building-non-flooded, road-flooded, road-
non-flooded, water, tree, vehicle, pool, and grass.

The xBD dataset (Gupta et al., 2019) focuses on
building damage assessment and includes around
700,000 building annotations across over 5,000 km²
of imagery from 15 countries, covering 6 different
types of disasters. The dataset provides pairs of
images captured before and after the disasters.

AIDER (Kyrkou and Theocharides, 2019,
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2020) contains images for four disaster events:
Fire/Smoke, Flood, Collapsed Building/Rubble,
and Traffic Accidents, mainly comprising high-
resolution aerial images. The primary task is disas-
ter classification into these four categories.

The Ida-BD dataset (Roueche et al., 2022) in-
cludes 87 pre- and post-disaster satellite imagery
pairs with very high resolution (0.5m/pixel) from
Hurricane Ida 2021 in Louisiana, USA. Similar to
the xBD dataset, it uses polygons to represent build-
ing segments and provides four damage categories.

RescueNet (Chowdhury et al., 2022) consists
of 4494 high-resolution post-disaster UAV images
from Hurricane Michael, annotated for tasks such
as classification and semantic segmentation, with
pixel-level annotations for 10 classes and different
damage levels.

RESCUENET-VQA (Sarkar and Rahnemoon-
far, 2023) includes 103,192 image-question-answer
triplets derived from images captured after Hurri-
cane Michael. It features 206 unique questions
across 9 categories: Simple Counting, Complex
Counting, Building Condition Recognition, Road
Condition Recognition, Level of Damage, Risk
Assessment, Density Estimation, Positional, and
Change Detection.

The AIST Building Change Detection (ABCD)
dataset includes post-tsunami images, focusing on
building change detection.

(Chen et al., 2018) provides data from two
sources, including crowdsourced annotated Dig-
italGlobe satellite imagery and data collected by
FEMA, covering Hurricane Harvey with both raster
(satellite and aerial imagery) and vector data (aux-
iliary building damage information).

(Yuan et al., 2022) introduced the CDVQA
dataset, which includes multi-temporal image-
question-answer triplets generated using an auto-
matic question-answer generation method.

LEVIR-CD (Chen and Shi, 2020) is a remote
sensing building change detection dataset compris-
ing 637 very high-resolution (VHR, 0.5m/pixel)
Google Earth (GE) image patch pairs with a size
of 1024 × 1024 pixels, with bitemporal images
spanning 5 to 14 years.

(Pang et al., 2024) discusses large-scale pre-
training datasets.

2.2 Models for VQA in Remote Sensing
Current-generation Visual Language Models
(VLMs) are not well-adapted for remote sens-
ing, which includes multispectral (like Sentinel-2),

non-optical, or multi-temporal images (for tasks
like change detection and captioning) (Zhang and
Wang, 2024). Most remote sensing tasks involve
some form of classification, which requires fine-
tuning or at least in-context learning abilities, or
segmentation.

2.3 Event Dataset Collection

João Pedro, who previously worked on this project
last semester, collected an extensive dataset of 5045
unique events from various sources. These events
cover multiple disaster categories, including Flood,
Earthquake, Wildfire, Explosion (Industrial), and
more. The sources include:

• EM-DAT: The Emergency Events Database
• Wikipedia
• Wikidata

3 Datasets

3.1 Sentinel-2 Images

The image collection process for our disaster-
related dataset relies on the Copernicus Sentinel-2
Surface Reflectance (Level-2A) Harmonized data,
accessible via Google Earth Engine (GEE). This
dataset offers high-quality, multispectral imagery,
which is vital for accurately capturing the charac-
teristics of disaster events and their impacts on the
environment. In addition, for each image we saved
its metadata including the acquisition date, sen-
sor details, cloud cover percentage, and the exact
coordinates of the tiled areas.

3.1.1 Data Collection

Sources We exclusively use the COPERNI-
CUS/S2_SR_HARMONIZED2 collection from
Sentinel-2, which starts from March 28, 2017.
This dataset provides images with 12 spectral
bands, offering valuable information across differ-
ent wavelengths, including visible, near-infrared,
and short-wave infrared. Each image’s spatial reso-
lution ranges from 10 meters, for the RGB bands,
to 60 meters depending on the band. Due to the
size constraints of direct downloads from GEE, we
used the library geemap which allows large file pro-
cessing by directly downloading all bands into a
single .tif raw file.

2https://developers.google.com/earth-engine/
datasets/catalog/COPERNICUS_S2_SR_HARMONIZED
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Figure 1: Sentinel-2 images temporal evolution for a Wildfire event

Temporal Coverage To adequately capture the
state of an area before and after a disaster, we gather
images within a 90-day window centered on the
disaster date. This period is divided to include 45
days before and 45 days after the event, allowing
for an analysis of the preliminary conditions and
the subsequent recovery or degradation. Within
this timeframe, we prioritize acquiring the first 10
images closest to the disaster date to ensure we
capture the most relevant changes.

Spatial Coverage For each disaster, the spatial
extent of the imagery encompasses a 30km ×
30km = 900km2 area centered on the reported
disaster location. This size is typically sufficient to
cover the affected area and some of the surround-
ing regions, providing a comprehensive view of the
disaster’s impact.

Cloud Filtering & Image Quality Given the fre-
quent cloud cover issues in optical satellite imagery,
we apply strict cloud filtering criteria to select only
those images where cloud cover is less than 10%
of the total area using the QA60 band of Sentinel-2
representing the cloud mask. This step is crucial to
ensure that the imagery is usable for visual assess-
ments and algorithmic processing.

3.1.2 Data Processing
To generate a RGB preview we used the rasters of
bands B2, B3, B4 and first apply a gamma correc-
tion V = V

1
γ with γ = 2 followed by a min-max

scaling to obtain a 0-255 scale. Additionally, the
images were reprojected to the EPSG:38573 pro-
jection to ensure alignment with OSM data, which
uses this projection.

3.1.3 Limitations
• Event Retrieval: Only a small proportions of

events are retrieved (before 2019 almost all
3https://epsg.io/3857

events fail to retrieve at least one image in the
region across the 90 days period).

• Image artifacts: Some images have blacks
segments due to the way sentinel orbit around
the earth and doesn’t collect data for every
region on earth.

• Geometric shifts: Sometimes the images
have 1 or 2 pixels of shift (due either to the
API or the image processing that remap the
image into the EPSG:3857 projection)

• RGB Processing Variability: The image pro-
cessing of RGB preview isn’t an exact process
since the rasters data can vary a lot across im-
ages (some Sentinel-2 images can have pure
black/white/red/blue/green pixels which are
probably due to the satellite itself)

3.2 OpenStreetMap

To enhance our dataset with contextual geo-
graphic information, we integrated data from Open-
StreetMap (OSM). This integration provides de-
tailed information about various geographic fea-
tures that can significantly aid in the analysis of
disaster impact.

3.2.1 Data Collection
We used the Overpass API to query OSM for rele-
vant geographic features within the bounding boxes
of our disaster event areas. Our queries targeted
features tagged under categories like highways, nat-
ural elements (e.g., forests, water bodies), land use
(e.g., residential areas, orchards), buildings and ad-
ministrative area. These categories were selected
due to their relevance in disaster impact analysis.

The bounding boxes for our queries were deter-
mined based on the extent of the affected area for
each disaster event. This ensures that the retrieved
OSM data accurately corresponds to the regions of
interest in our dataset.
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(a) Example of OSM data overlay on a Flood event’s
satellite image. (b) Example of WorlCover data of a Flood event

3.2.2 Data Processing
The raw OSM data extracted using Overpass API
were processed to align with our disaster dataset’s
spatial and temporal resolutions. This involved
converting vector data into raster format to match
the Sentinel-2 imagery’s 10-meter resolution.

3.2.3 Limitations
Despite the richness of OSM data, several limita-
tions exist:

• Incomplete Coverage: OSM data may not be
comprehensive for all regions, particularly in
less urbanized or less developed areas.

• Update Frequency: The data might not al-
ways be up-to-date, as OSM relies on volun-
tary contributions which can vary significantly
in frequency and accuracy.

• Variability in Detail: The level of detail can
vary widely between regions. Some areas may
have highly detailed annotations, while others
may lack critical geographic features.

• Temporality: We only took the latest data for
the given region and not the data at the time
of the event assuming their were no changes.

3.3 Basemap: ESA WorldCover v200
To complement the OSM data and provide detailed
information about ground types, we utilized the
ESA WorldCover v200 4 dataset. This dataset of-
fers global land cover maps at a 10-meter reso-
lution, making it suitable for our disaster impact
analysis.

4https://developers.google.com/earth-engine/
datasets/catalog/ESA_WorldCover_v200

3.3.1 Data Collection
The ESA WorldCover v200 data from 2020 were
accessed through Google Earth Engine (GEE). This
dataset provides detailed classifications of land
cover types, such as forests, grasslands, urban ar-
eas, water bodies, and more. The global coverage
and high resolution of this dataset make it an excel-
lent resource for understanding the baseline land
cover conditions before and after disasters.

3.3.2 Data Processing
The WorldCover data were processed to ensure spa-
tial alignment with our Sentinel-2 imagery. This in-
volved reprojecting the WorldCover data to match
the EPSG:3857 projection used in our dataset and
resampling it to a 10-meter resolution. This pro-
cessing step ensures that the land cover data can
be accurately overlaid on our satellite imagery for
comprehensive analysis.

3.3.3 Limitations
While the ESA WorldCover dataset is highly valu-
able, it also has some limitations:

• Temporal Discrepancy: The dataset is from
2020, which may not perfectly align with the
disaster events’ timeframes. Assumptions
were made that land cover types have not
significantly changed within the short peri-
ods around each disaster event (urban devel-
opment being the most probable source of
change)

• Resolution Constraints: Although the 10-
meter resolution is relatively high, certain
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small-scale changes or fine details might still
be missed.

3.4 ReliefWeb
To further enrich our dataset, we incorporated tex-
tual information from ReliefWeb5, a specialized
platform that provides comprehensive reports and
data on disasters worldwide. This data can be
particularly useful for question-answering tasks
by providing detailed context and descriptions of
events.

3.4.1 Data Collection
Disaster Events Retrieval We queried the Re-
liefWeb API to retrieve data for events with the
same types as those in our dataset and during the
same period (2017-present). Each retrieved disaster
event includes an identifier, type, name, description,
and the date of occurrence.

Report Collection For each disaster event, we
collected associated reports using the ReliefWeb
API. These reports provide detailed textual informa-
tion, including the body of the report, publication
date, title, summary, and source. The reports are
stored in a structured format, enabling easy integra-
tion and further analysis.

3.4.2 Limitations
• Event Matching: The matching between our

dataset and ReliefWeb data is not exact, which
can lead to inconsistencies.

• Merging Datasets: The inner join matching
of our data with ReliefWeb data is relatively
small, limiting the extent of enriched informa-
tion available.

4 Annotations

To facilitate the development of accurate and re-
liable models for disaster impact analysis, we
utilized the CVAT (Computer Vision Annotation
Tool)6 for annotating our dataset. This process in-
volves manually labeling the images to highlight
changes caused by various types of disasters. The
annotation focuses on events that are prone to vis-
ible changes at a 10m/pixel resolution, excluding
events like earthquakes where changes are typically
not visible from low resolution satellite imagery.

The annotation process is extensive and requires
meticulous attention to detail. Out of 1056 re-
trieved events, 300 where evaluated by hand out

5https://reliefweb.int
6https://github.com/cvat-ai/cvat

of which only 68 samples have been deemed ex-
ploitable and annotated.

4.1 Visibility subdatasets
Based on the visibility of changes in the satellite
images, we generated three types of samples:

1. Visible: The changes are clearly visible from
the satellite images.

2. Tiny-visible: The changes are visible pixel-
wise but only cover a tiny area.

3. Not visible: The change is not visible from
the satellite image, but the affected entity/area
is known (cross-referenced with news and
Google Maps to locate the exact position) and
annotated.

The distribution of the annotated samples is
shown in Fig 4. We can note that:

• Visible (36 samples): Wildfires are the most
visible type of disaster in our dataset, as
their effects are often extensive and easily de-
tectable from satellite imagery. Some floods
also show clear visible changes, particularly
in areas where water bodies overflow into sur-
rounding regions.

• Tiny-visible (13 samples): These are mostly
related to industrial fires, explosions, or small
landslides, where the affected area is relatively
small.

• Not Visible (19 samples): These typically in-
volve fire or explosion events affecting a sin-
gle building or a small area, usually in an
urban environment.

5 Change Detection

The task of change detection is crucial for analyz-
ing the impact of disasters. For this task, we focus
exclusively on the visible subdataset, as the other
datasets do not provide relevant information for
visual change detection.

5.1 Evaluated Models
We evaluated several state-of-the-art (SOTA) mod-
els on this task on models cited by (Jiang et al.,
2023) or (Corley et al., 2024) that include:

• FC-EF (Caye Daudt et al., 2018): A single-
stream network, where two images are con-
catenated as a single input and fed into a full
convolutional network (FCN).
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(a) Before (b) After (c) Annotated Change

Figure 3: Example of before, after, and annotated changes for a dam rupture (in the tiny-visible subset)

Method Precision Recall F1 OA IoU

P
re

tr
ai

ne
d

FC-EF 96.90 1.01 2.01 95.06 1.01
FC-Siam-Diff 70.42 0.11 0.23 95.02 0.11
FC-Siam-Conc 95.04 0.75 1.50 95.05 0.75
BIT 77.69 2.30 4.48 95.09 2.29
TinyCD 69.86 0.12 0.25 95.02 0.12
SeCo 1.19 8.49 2.09 60.43 1.05

Tr
ai

ne
d

FC-EF (ep. 14) 28.68 50.81 36.67 93.00 22.45
FC-Siam-Diff (ep. 19) 18.82 34.14 24.26 91.50 13.81
FC-Siam-Conc (ep. 5) 87.27 14.39 24.71 96.50 14.10
BIT (ep. 3) 15.14 12.79 13.86 93.66 7.45
TinyCD (ep. 10) 8.97 71.18 15.94 70.09 8.66

Table 1: Change detection results on pretrained and trained models for the visible dataset test split

Figure 4: Distribution of disaster types across the three
subdatasets

• FC-Siam-Diff (Caye Daudt et al., 2018): A
dual-stream network, where two images are
extracted features by using two FCN encoders,
and the difference operation is first performed
on the two image features, and the extracted
difference features at different levels are input
to the FCN decoder

• FC-Siam-Conc (Caye Daudt et al., 2018): A
dual-stream network, where two images are
extracted by two FCN encoders respectively,
and the features are concatenated together and
input to a FCN decoder.

• BIT (Chen et al., 2021): A dual-stream net-
work, which extracts high-level features via
convolutional networks and constructs seman-
tic tokens by using a Transformer.

• SeCo (Mañas et al., 2021): An architecture
that uses a ResNet encoder backbone for fea-
ture extraction with a U-Net decoder for seg-
mentation tasks. It employs multiple projec-
tion heads to create distinct embedding sub-
spaces, which are optimized for seasonal in-
variance and variance using contrastive learn-
ing on temporal and artificial augmentations.

• TinyCD (Codegoni et al., 2022): An archi-
tecture that uses an EfficientNet backbone to
extract convolutional features to feed to a cus-
tom attention-based decoder network

It is important to note that all the pretrained base-
lines were trained on other datasets like LEVIR-CD
(Chen and Shi, 2020), which is a building change
detection dataset with a resolution of 1024 x 1024
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(a) (b) (c) (d) (e) (f) (g)
Before After GT FC-EF FC-Siam-Diff BIT TinyCD

Figure 5: Visualization of change detection of trained models on some test set samples

pixels and 0.5m/pixel. Our dataset has a resolu-
tion of 10m/pixel, making direct transfer of models
challenging even though the patch sizes are 256
x 256 pixels in both cases. The SeCo model had
only its ResNet encoder pretrained, leading to non-
reliable results for the UNet decoder (untrained)
across different runs.

5.2 Training Setup
For our experiments, we trained these models on
a split of our dataset. The dataset was divided as
follows:

• Training set: 25 samples (70%)
• Validation set: 4 samples (10%)
• Test set: 7 samples (20%)

To enhance the diversity of the training set, data
augmentation was applied by randomly flipping
and rotating the images by 90° increments between
epochs. Models were trained for 20 epochs with a
batch size of 1 and patch size of 256x256, using the
Adam optimizer with a weight decay of 1e−4. The
learning rate followed an exponential decay sched-
ule with a decay rate of 0.95 per epoch. For the loss
function, we used BCEWithLogitsLoss for SeCo
and TinyCD models, and CrossEntropyLoss for the
others, with dynamically computed class weights
to handle class imbalance. The training was con-
ducted on one NVIDIA GeForce GTX TITAN X
(12GB VRAM).

5.3 Evaluation Metrics
We used five evaluation metrics to assess the perfor-
mance of the change detection algorithms, based
on (Chen et al., 2021) and defined as follows:

Precision =
TP

(TP + FP )
(1)

Recall =
TP

(TP + FN)
(2)

F1 =
TP

TP + 1
2(FP + FN)

(3)

IoU =
TP

(TP + FN + FP )
(4)

OA =
(TP + TN)

(TP + TN + FN + FP )
(5)

Where TP, TN, FP, and FN represent the number
of true positive, true negative, false positive, and
false negative, respectively.

5.4 Results
The results for both pretrained and trained models
are summarized in Table 1. Visual examples of the
change detection results are shown in Fig. 5. To
illustrate the training process, we present the F1
scores for the training and validation sets across 20
epochs.

All in all the TinyCD and BIT are not training
as efficiently as the FCN methods (see Fig. 7) and
all methods are not generalising well (see Fig. 8).
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(a) (b) (c)
Image before Image after Ground Truth

(d) Epoch 1 (e) Epoch 2 (f) Epoch 3 (g) Epoch 4 (h) Epoch 5 (i) Epoch 14

Figure 6: Visualization of change detection on a test sample over epochs of the FC-EF model training

Figure 7: F1 score of the FC-EF model on the training
set (across 20 epochs)

However the FC-EF seems the most promising in
early generalization across epochs as shown in Fig.
6 with a test sample.

6 Conclusion

This research developed a detailed dataset tailored
for disaster impact analysis using multispectral
aerial images from Sentinel-2, enriched with con-
textual data from OpenStreetMap (OSM), ESA
WorldCover, and textual reports from ReliefWeb.
The integration of these diverse data sources allows
for a nuanced understanding of disaster impacts
across different scenarios.

The annotation process proved to be highly time-
intensive, with a stringent selection criterion that re-
sulted in a small proportion of the initially retrieved
samples being used. The dataset was divided into
three visibility-based subsets: visible, tiny-visible,

Figure 8: F1 score of the FC-EF model on the validation
set (across 20 epochs)

and not visible, facilitating specific analyses tai-
lored to the characteristics of each subset.

A proof of concept for change detection tasks
was performed. The limited scope of this initial
exploration sets the stage for a future larger dataset
that could support SOTA models training in change
detection and VQA for disaster events.

7 Future Work

Looking ahead, the project will benefit from:

• Expanding the dataset annotations to include
a wider array of disaster types and more sam-
ples.

• Streamlining the process for synchronizing
event data with corresponding news and tex-
tual reports to enhance the dataset’s reliability
and comprehensiveness.
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• Further developing the change detection
framework by refining model training and ex-
ploring the use of Sentinel-2 full spectral data
(12 bands) beyond the RGB channels, com-
bined with the WorldCover layer.

• Implementing additional tasks such as visual
question answering (VQA) to leverage the
multimodal nature of the dataset fully.
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