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1 Introduction

Question 1.a) study the behavior of the model when epidemics are unmitigated

As shown on Figure 1, in the absence of any pre-
ventive measures, the number of susceptible people
decreases rapidly within the first 10 weeks. This is
primarily due to the high rate of transmission of the
disease, which leads to a quick transition from sus-
ceptibility to infection and then to recovery or death.
We can indeed see a sharp increase in the number of
recovered individuals during the same period.

Moreover, if we focus on the total number of in-
fected and dead individuals (Figure 2, we can see
that the number of deaths grows rapidly until the
10th week, after which it plateaus at approximately
175,000. This indicates that an unmitigated spread
leads to a significant number of deaths within a short
period. The number of infections oscillates between
25,000 and 50,000 until the 10th week, after which it
drops to zero. This pattern suggests that the virus has
effectively spread throughout the population, leaving
no one susceptible but many recovered or dead.

Looking at the data on a per-city basis on Figure
3, it’s clear that the virus’s spread and impact vary
across different cities. Some cities see an early peak
in infections and deaths, while others experience these
peaks later in the time period. Despite these vari-
ations, all cities eventually reach a similar end-state
with the deadly epidemic ending after week 15.

Figure 1: Population variables for unmitigated epidemic
episode as function of time (week)

Figure 2: Total dead and infected for unmitigated epi-
demic episode as function of time (week)

Figure 3: Dead and infected per city for unmitigated epi-
demic episode as function of time (week)
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2 Professor Russo’s Policy

Question 2.a) Implement Pr. Russo’s
Policy

As shown on Figure 6, with Russo’s policy, the sus-
ceptible population is stable during each confinement
period, implying that the spread of infection is being
controlled during these times. The number of recov-
ered individuals increases in plateaus, suggesting a
slower rate of recovery during confinements, likely due
to decreased infection spread. The death count also
shows plateau patterns, indicating the policy’s success
in reducing fatalities.

On Figure 7 we can clearly see the number of in-
fections spiking before the start of each confinement.
This makes sense as the policy triggers a confinement
when the number of infected cases surpasses a certain
threshold (20,000). This shows that Russo’s policy
is responsive and is working as intended to restrict
the spread during high infection periods. The death
count’s plateau behavior is a positive sign, reflecting
the success of confinements in controlling the death
toll. On the other hand, the Russo’s policy cannot end
the spread in less than 30 weeks.

The varied infection spikes in different cities shown
on Figure 5 suggest that while the policy may effec-
tively mitigate the disease spread in some regions,
others might still experience heightened infections due
to factors such as population density and timing of the
first infection, with some cities never infected by the
spread. The policy is somewhat effective on a national
level but does not account for the heterogeneity in
city-level outcomes.

The consistent and periodic confinements shown on
Figure 4 reflect the policy’s effectiveness in tracking
and responding to the epidemic’s evolution. Despite
the periodic frequency of confinements, this strategy
seems to manage the situation effectively, leading to
plateaus in the death and recovery counts and success-
fully slowing down the disease’s spread.

Figure 4: Actions for Pr. Russo’s policy epidemic episode
as function of time (week)

Figure 5: Dead and infected per city for Pr. Russo’s pol-
icy epidemic episode as function of time (week)

Figure 6: Population variables for Pr. Russo’s policy epi-
demic episode as function of time (week)

Figure 7: Total dead and infected for Pr. Russo’s policy
epidemic episode as function of time (week)
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Question 2.b) Evaluate Pr. Russo’s Policy

Figure 8: Evaluation of the Pr. Russo’s Policy

3 A Deep Q-learning approach

3.1 Deep Q-Learning with a binary action space

Question 3.a) implementing Deep Q-Learning

Figure 9: Training process of πDQN with constant explo-
ration

As seen in Figure 9, the evaluation trace, representing
the average cumulative reward, increases until the 150
episode where it plateaus between 30-40. The training
traces still spread uniformly between the eval trace and
-300. Although the agent was able to learn a policy,
the efficacy of that policy in mitigating the epidemic
is debatable since Pr Russo’s policy achieved the same
average cumulative reward (around 40), as shown in
Figure 8.

As seen in Figure 10, the learned policy characterizes it-
self by having different lengths confinements separated
by short non-confinement periods. However, it doesn’t
seem to confine soon enough to prevent the disease’s
spread to other cities, resulting in sharp peaks of in-
fected individuals. In the end the policy doesn’t per-
form better than Russo’s policy since it ends with more
confined days while having about the same cumulative
reward and number of deaths.
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Figure 10: One episode of the best policy π∗
DQN with constant exploration

Question 3.b) decreasing exploration

Figure 11: Training process of πDQN with decreasing ex-
ploration

As seen in Figure 11, the evaluation trace, representing
the average cumulative reward, increases until the 150
episode where it plateaus between 30-40. The training
traces also tend to spread more around the eval trace.

As seen in Figure 12, the learned policy characterizes
itself by having long confinements separated by short
non-confinement periods with high infected spikes.
However it doesn’t end the epidemic in 30 weeks and
does seem to confine too much. In the end the policy
performs better than Russo’s policy since it ends with
about half the deaths.

It’s hard to differentiate the two DQN policies since they
have almost the same cumulative reward and confine-
ment days. Nevertheless, if we had to choose one it’ll
be the one obtained with decreasing exploration (3.b) as
shown in Figure 14 where we can see that the average
number of death is lower than the one shown by policy
3.a) on Figure 13.
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Figure 12: One episode of the best policy π∗
DQN with decreasing exploration

Question 3.c) evaluate the best performing policy against Pr. Russo’s policy

Figure 13: Evaluation of π∗
DQN without decreasing exploration
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Figure 14: Evaluation of π∗
DQN with decreasing exploration

As said before, the best DQN policy is the one from 3.b) (with decreasing exploration) as shown in Figure
14. It exhibits better performance than Pr. Russo’s strategy when evaluated on average confinement days and
average death count. Despite having higher average confinement days (∼160 days compared to ∼140 days),
it significantly reduces the average death count (∼5,500 compared to ∼90,000). While being potentially
more disruptive in the short-term due to extended confinement periods, it crucially achieves a substantial
reduction in fatalities, underlining its superior performance.

4 Dealing with a more complex action Space
Question 4.1.a) (Theory) Action space design

The toggle-action space proposed provides an elegant solution to handle more actions without expanding the
direct action space dimensionality excessively. Instead of considering each possible state-action pair directly,
we have a set of toggle actions that can modify the state of their respective actions. Thus we only need
to estimate the Q-values for five toggle actions. This results in a more manageable action space, leading to
a smaller, simpler network architecture that requires less computations, reducing the exploration time and
variance during training.

Question 4.1.b) Toggle-action-space multi-action policy training

Figure 15: Training process of πtoggle

As seen in Figure 15, the evaluation trace, representing
the average cumulative reward doesn’t look to increase
so much, and is varying in a random way. Furthermore
we can see that training traces don’t converge to
anything interesting.

As seen in Figure 16, the learned policy is the taking-
no-action-policy. As discussed in 4.1.d network doesn’t
have a memory of past action. Since actions are
dependent of each other, it converged to never toggling
any action, which is probably better than randomly
toggling any actions without knowledge of the previous
ones. It is not properly learning.
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Figure 16: One episode of the best policy π∗
toggle

Question 4.1.c) Toggle-action-space multi-action policy evaluation

Figure 17: Evaluation of π∗
toggle

The toggle-action-policy
performs much worse than
the binary-action-policy
because as we have seen, it
is learning to not do any-
thing at all. Its cumulative
reward histogram is much
lower.

Question 4.1.d) (Theory) question about toggled-action-space policy, what assumption does it
make?

It assumes that actions are independent of each other. This might not be valid if there are dependencies
between actions. In addition, it doesn’t have a memory of past actions which could lead to toggling actions
on and off in consecutive time steps and may not be beneficial in some environments. Moreover, it assumes that
actions have an immediate effect which is not always the case, for example toggling on/off a radiator doesn’t
affect instantly the temperature of a room.
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4.1 Factorized Q-values, multi-action agent
Question 4.2.a) multi-action factorized Q-values policy training

Figure 18: One episode of the best policy π∗
Factor

Figure 19: Training process of πFactor

This agent doesn’t suc-
cessfully learn because it
performs less good than binary-
action-space policy having more
freedom. For instance it looks
like the useless actions distract
the learning algorithm. The
policy is realistic since it tends
to predict to always confine
people.
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Question 4.2.b) multi-action factorized Q-values policy evaluation

Figure 20: Evaluation of π∗
Factor

As shown in figure 20 the factorized policy performs better than the toggled policy. Its cumulated
reward is slightly positive, while as shown in figure 17 the cumulated reward of the toggle action policy is slightly
negative.

Question 4.2.c) (Theory) Factorized-Q-values, what assumption does it make?

It assumes that actions are independent of each other and that there are no interaction effects between actions.
In other words, the combined effect of two actions is assumed to be simply the sum of their individual effects.
In addition, it assumes that all actions are of equal importance, as each action contributes independently to
the Q-value. This might not be the case in many real-world problems, like for example in chess where the
effectiveness of a move heavily depends on the sequence of prior moves.

5 Wrapping Up
Question 5.a) (Result analysis) Comparing the training behaviors

• The single-action DQNs have an evaluation curve increasing then plateaus

• The toggle-action-space policy has an evaluation curve that doesn’t seem to increase an randomly oscillate

• The factorized Q-values policy has a constant evaluation curve, which value highly depends on the seed.

• The Pr. Russo’s policy doesn’t learn thus it doesn’t have an evaluation curve

The single-action DQN seem to perform best the learning process since it has an increasing cumulative
reward curve.

Question 5.b) (Result analysis) Comparing policies

avg[Nconfinement] avg[Nisolation] avg[Nvaccination] avg[Nhospital] avg[Ndeaths] avg[Rcumulative]
πrusso 138.74 - - - 93250.46 27.328
πDQN 160.3 - - - 5598.94 27.817
πtoggle 0 0 0 0 846481 -151.09
πfactor 210 0 0 0 2318.96 23.20

The Pr. Russo policy isn’t the best in any criterion while other policies are the best performing in one of the
criterion (thus extreme). The Pr. Russo policy can thus be interpreted as a good compromise between each
criterion.
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Question 5.c) (Interpretability) Q-values

Figure 21: Q-values evolution heatmap for one episode of π∗
Factor

On Figure 21 we can see that for the π∗
Factor the Q-values are constant through time and only for "Confinement"

do we have a "on" state with a higher q-value than the "off" state (thus being activated).

Figure 22: Q-values evolution heatmap for one episode of π∗
DQN

On the other hand for on Figure 22 we can see for the π∗
DQN policy that the Q-values varies a lot through

time.

Question 5.d) (Theory), Is cumulative reward an increasing function of the number of actions?

Adding more actions to an agent’s action space does not automatically yield better rewards.
If the added actions are not relevant/beneficial given the specifics of the environment and task, they may

not improve and even degrade performance. For example a useless action can distract the learning algorithm
and make it harder to find the best policy by adding more complexity to the task.
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