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Abstract

The aim of our project is to apply machine learning methods to CERN particle accelerator data to determine Higgs boson
generation across multiple proton collision events. From a dataset consisting of feature vectors representing the decay
signature of collision events, our goal was to predict whether the events consisted in a signal (a Higgs boson) or background.

I Introduction

The project consisted in developing a model from a training
data set in order to predict whether events described by
feature vectors in a test set corresponded to a Higgs boson
generation event or not. In the first place, we analyzed our
datasets and cleaned our data by ridding it of insignificant
features. The next step was to implement learning
algorithms to generate models that could fit our data, based
on regression and classification. After comparing the scores
for each method, we concluded on a machine learning
method that was most adequate to predict our data.

II Data Analysis and Feature
Engineering

a. Data Set Description

The data we were provided with for this project consisted in:

• A training set of 250 000 collision events with 30
features and a label column (-1 or 1). The label -1
corresponds to a background event and the label 1
stands for a signal event.

• A test set of 568 238 events, organized in the same
manner as the training set except for the empty label
column. Our work consisted in accurately predicting
the labels for the test set.

b. Data Cleaning

For some entries, variables were meaningless and could not
be computed, and were therefore set to -999.0. We replaced
all meaningless values with the mean value of the
corresponding feature column. We thought of deleting
features columns with a majority of -999.0 values (>50%),
but as shown in Figure 1, the accuracy of the predictions for
the "dirty" original data is higher than the "clean" one
obtained while removing features. Thus, we chose not to
remove such features.

c. Training Set Split Method

By looking at the correlation between the features with a
high proportion of meaningless values, we found that the
22nd feature (which takes integer values in {0,1,2,3}) was
highly correlated to the meaningless -999.0 values. By
splitting the data set into four sets according to the 22nd
feature value, we observed that in the first and second sets
there were respectively 10 and 7 features with 100% of
-999.0, which could thus be fully removed. After splitting
the rows according to the value of the 22nd feature, we
obtained four sets which corresponded to 39.97%, 31.02%,
20.15% and 8.87% of the original training set, containing
respectively 19, 22, 29 and 29 feature columns.

d. Data Standardization

Standardization is an important step in machine learning
and reduces the risks of feature matrix ill-conditioning. We
first shuffled our data to reduce noise. We then implemented
a function to standardize our data sets by subtracting the
mean and standard deviation of the training data from the
data. In fact, it is important that both data sets be
standardized using the training mean and standard deviation
in order to obtain relevant prediction results.

Figure 1: Logistic regression training accuracy as a function of the num-
ber of iterations using the original training data (blue) and the filtered data
(red).
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III Model Prediction
We began by implementing the functions we were asked to
implement and tested the following models on the given test
set: mean square error with gradient descent, mean square
error with stochastic gradient descent, least squares and
ridge regression. The results are indicated in Table 1. In this
section, we detail only the most relevant prediction models.

a. Ridge Regression
For the ridge regression model, we extended our features to
polynomial features and implemented a 4-fold cross
validation algorithm to determine the most optimal degree
for the polynomial basis (the degree that minimizes the root
mean square error over the validation sets) and the most
optimal ridge parameter λ . Extending to polynomial
features reduces underfitting, and k-fold cross validation
reduces the risk of overfitting. We found that degree 2
feature expansion seemed to be the best choice to fit our
data without overfitting. The accuracy score for the ridge
regression model with degree 2 feature expansion is
displayed in Table 1.

b. Logistic Regression
Since the labels take two values (-1 or 1), it was obvious that
the data was classified into binary classes: one class
corresponding to a Higgs boson generation signal and the
other to background signal. Hence, the most adequate
choice of prediction model seemed to be logistic regression.

We first implemented a logistic regression algorithm, which
indeed produced more accurate results (as shown in Table
1). We performed some hyperparameter optimization on γ

and tested our model with varying numbers of iterations.
We observed that ≥15’000 iterations did not significantly
improve the results.

Then, we extended the feature matrix to a polynomial
feature matrix, since we esteemed that our predictions were
undergoing underfitting issues. We implemented a degree II
optimization function similar to the one described in
Subsection a.. We then found the most optimal values for γ

for the logistic regression predictions with degree II feature
expansion and a 4-set data split (see II c.), and obtained that
γ = 0.1 for the first and fourth sets and γ = 0.01 for the
second and third ones were the best choices. With a training
accuracy of 82%, our predictions with degree II feature
expansion were clearly better and reduced underfitting of
our model. We attempted a degree III expansion but it did
not improve our results and was, in addition, far too
computationally costly.

c. Regularized Logistic Regression
Lastly, we thought of improving our prediction model by
adding a regularization term to our logistic regression of
degree II, in order to further reduce overfitting risks.

IV Computational Costs

a. Degree II Feature Expansion
For our degree II polynomial expansion, we computed every
cross-term xixj for ∀i, j and j ≤ i, which is costly compared
to simply computing all xi

2. In addition, it increases the
computational cost of the model fitting algorithms since it
significantly increases the number of features.

b. Logistic Regression
For each iteration, we computed the log loss function and
we decided to break our function if the loss did not change
enough according to a threshold. The breaking technique
allowed for the algorithm to stop running through
unnecessary iteration loops and thus to run quicker.

V Results
We used several methods for our tests, abbreviated as follows : D-II : degree II polynomial feature expansion, S4 : split in 4
sets according to 22nd feature value (see II c.), γi : γ value used on set i.

Model Training Accuracy Test Accuracy Remarks
Least squares 0.806 0.803 done with D-II and S4
Ridge regression 0.806 0.804 done with D-II and S4 with λ = 0.001
Mean square error GD 0.806 0.774 done with D-II and S4 with γ1 = 0.1 and γ2,3,4 = 0.01
Mean square error SGD 0.807 0.781 done with D-II and S4 with γ1 = 0.1 and γ2,3,4 = 0.01
Logistic regression 0.754 0.751 done with 15’000 iterations and γ = 0.01
Logistic regression degree II 0.827 0.825 done with 15’000 iterations, D-II, S4 with γ1 = 0.1 and γ2,3,4 = 0.01
Regularized logistic regression degree II 0.826 0.825 done with 15’000 iterations, D-II and S4 with λ = 0.001,

γ1,4 = 0.1 and γ2,3 = 0.01

Table 1: Training and test accuracy for each prediction algorithm
VI Conclusion
To conclude, we implemented six different classification algorithms. We then performed some optimization on the logistic
regression and managed to improve the training accuracy from 75.4% up to 82.7% by using degree 2 polynomial feature
expansion and smart data splitting and cleaning. We obtained the best prediction accuracy with the degree II 4-set split
logistic regression model.
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