
Fine-tuning T5 for question-answering task on
EPFL courses data: an attempt at replacing teaching

assistants

Delabarre Luca, Faure Antonin, Nemo Fabrice

Abstract—The task of providing help to students is hard.
Students often need lengthy interactions with other humans
to understand a problem step by step. Our aim is to train a
large language model (LLM) on various subjects, specifically
undergraduate courses at EPFL, such that the student can get
detailed and quick answers without human contact. Students
can then get help faster and assistants can focus on other tasks,
such as more complex questions that the model cannot answer.
Our results show that getting a LLM to answer course questions
is possible but remains a complex task, for which performance
greatly depends on the quality of the datasets used and nature
of the questions.

I. INTRODUCTION

Providing help to students is a challenging and costly task.
It often requires direct, one-to-one human interaction between
a teaching assistant and a student. Moreover, the interaction
may take time and require significant effort and knowledge
from the assistant to be able to grasp the understanding of the
student and provide relevant help. Our project aims at training
a large language model such that it can take the role of an
assistant. This would eliminate the overhead of complexity,
length and cost associated with traditional student-assistant
interactions and greatly improve the ability of students to learn
on their own. Work towards creating personalized assistants
already exists but these assistants are often bad at mathematical
reasoning and logic. By fine-tuning a large language model
with data coming directly from EPFL courses, we are hoping
to lay the building blocks of a new way of learning and getting
help for students.

II. RELATED WORK

This task is not specifically new, there are other examples
in the literature of LLM fine-tuning aimed at providing better
results for a specific task. Our work is new in that it focuses
specifically on Bachelor courses taught at EPFL. The train
dataset is new yet the aim is similar to previous works which
is why we relied on several papers to get inspiration on how
to fine-tune our model with our data.

We used a higher-level language model (GPT-4 from Chat-
GPT) to generate data, namely the text of an ”interaction”
between a student (who asks a question) and an instructor
(who answers it giving explanations). We got inspiration from

prompt patterns[6] to write prompts that allowed us to use
ChatGPT for generating proper ”interactions” that were then
used as examples of the expected behavior of our model.

InstructGPT[3] is a language model based on GPT-3 that has
been trained specifically for following instructions from the
user. Its training has been done with Reinforcement Learning
from Human Feedback (RLHF), and using cross-entropy loss,
that we have reused for training our model.

Vicuna[1] is an open-source language model that has been
fine-tuned with prompts from a higher-level language model
(ChatGPT), this is similar to our approach. Vicuna is different
from our model as it is meant to be generalist, whereas ours
aims to be specialized for Bachelor courses from EPFL. The
fine-tuning of Vicuna relied on user-shared conversations from
ShareGPT.com, but we could not rely on it as its API was no
longer accessible by the time we had to train our own model,
and the API is not convenient for gathering interactions that
fit the content of Bachelor courses from EPFL. The paper
detailed a qualitative evaluation method that relies on a higher-
level LLM (GPT-4), we got inspiration from their method
to evaluate our own model. The related blog article doesn’t
provide a proper way to evaluate quantitatively the outputs of
the model.

We also got inspiration from Alpaca[5] which is an
instruction-following language model fine-tuned from Meta’s
LLaMA model. We used their data to teach our model to
follow instructions.

III. APPROACH

We aimed to combine the robustness of a large language
model with sophisticated fine-tuning techniques, utilizing both
supervised learning and reinforcement learning. Our process,
as shown on Figure 1, involves an initial phase of supervised
fine-tuning of the T5 model, followed by a reinforcement
learning phase using either a Proximal Policy Optimization
(PPO) algorithm or a N sampling method .

A) Model Architecture
We started from a well known model T5[4] (Text-to-text

Transfer Transformers) that has proved its ability on various
tasks such as question answering, summarization, and even

1

https://github.com/tatsu-lab/stanford_alpaca#data-release


Delabarre Luca
Faure Antonin
Nemo Fabrice

Fine-tuning T5 for question-answering task on EPFL
courses data: an attempt at replacing teaching

assistants

Fig. 1: Training Pipeline

classification when translated in text format. Our idea was to
explore its ability to answer questions and extend it to various
questions from EPFL courses. We tried two variations of T5,
the base version and another publicly available version that
was trained on question answering tasks from Huggingface
that we refer to as the valhalla T5 model.

B) Supervised Fine-tuning
Following the selection of T5 as our base model, we used

supervised fine-tuning to adapt it to the specific context of
EPFL undergraduate courses. We first used an external dataset
of instruction-following examples. Then, we further fine-tuned
the model with a dataset of questions and demonstrations
answers from these courses.

C) Reward Model
The reward model serves a pivotal role in evaluating and

providing feedback on the quality of the responses generated
by our T5 model. It is trained on a dataset of chosen-rejected
demonstrations pairs for questions from EPFL courses, en-
abling it to distinguish between high-quality and low-quality
answers.

D) Reinforcement Learning
After the initial fine-tuning phase, we experimented with

multiple reinforcement learning approaches to refine the
performance of our model, all aiming at enhancing the
model’s ability to generate high-quality responses.

1) Proximal Policy Optimization (PPO)

First, we tested the Proximal Policy Optimization (PPO)
algorithm, a policy optimization method that refines the
quality of the model’s responses by maximizing the reward
defined by our reward model.

During each PPO iteration, we used a decreasing
temperature meaning that as the PPO iterations progressed
for each question, the model was increasingly encouraged
to exploit what it had already learned about the task, rather
than exploring new solutions. This technique helped ensure
the convergence of our model towards an optimal policy,
enhancing its ability to provide high-quality responses to

complex queries.

Algorithm 1 Proximal Policy Optimization
for e← 1 to epochs do

for each question in dataloader do
actionold ← get action(question)
rewardold ← get reward(actionold)
for i← 1 to ppo epochs do

temperature← max(0.1, 1− 0.1× ppo epochs)
action← get action(question)
reward← get reward(action)
loss← get loss(reward, rewardold)
optimizer.zero grad()
loss.backward()
optimizer.step()

end for
end for

end for

2) N Sampling

To ensure the optimal selection of responses, we utilized
a ”N sampling” approach. In this technique, the model gen-
erates a fixed number (N) of responses and applies back-
propagation for each response’s reward given by the reward
model. This process effectively guides the model towards
generating higher-quality answers by learning directly from the
diverse set of generated responses. By broadening the range
of potential responses and reinforcing learning from high-
reward answers, we mitigate the risk of the model producing
suboptimal answers, thus improving the overall quality and
diversity of the model’s responses.

3) Comparing Actions with Ground Truth

Another potential approach we considered is directly
comparing the reward of the model’s generated actions with
the reward of the true solution. This approach could enhance
the learning process by providing a direct comparison between
the model’s responses and the ideal answer, thereby refining
the model’s policy to generate higher-quality responses.

In this proposed method, we calculate the reward for the
model’s generated action and for the ground truth action. We

2

https://huggingface.co/valhalla/t5-base-qa-qg-hl


Delabarre Luca
Faure Antonin
Nemo Fabrice

Fine-tuning T5 for question-answering task on EPFL
courses data: an attempt at replacing teaching

assistants

Algorithm 2 N Sampling
for e← 1 to epochs do

for each question in dataloader do
actions← get actions(question, n)
rewards← get rewards(actions)
for each reward in rewards do

loss← −reward
optimizer.zero grad()
loss.backward()
optimizer.step()

end for
end for

end for

then compute a loss function, such as cross-entropy or hinge
loss, between these two rewards. The model is updated by
back-propagation through this loss, encouraging it to generate
actions closer to the ground truth.

While this method presents a clear and direct learning goal,
it also has potential drawbacks. The model may overfit to
the training data, limiting its ability to generalize to unseen
queries. Additionally, the method assumes that the ground
truth action is always the best possible action, which may not
be the case due to the inherent subjectivity and complexity
of conversational tasks.

Algorithm 3 Comparing Actions with Ground Truth
for e← 1 to epochs do

for each (question, ground truth) in dataloader do
action← get action(question)
reward action← get reward(action)
reward truth← get reward(ground truth)
loss← get loss(reward action, reward truth)
optimizer.zero grad()
loss.backward()
optimizer.step()

end for
end for

IV. EXPERIMENTS

A) Data
1) Reward model

• m2 reward dataset chaipas basic math: This dataset
contains basic math demonstrations. It is a collection of
dictionaries with keys entry id, chosen and rejected. The
chosen string is a valid interaction consisting of a math
question and an answer generated by GPT-4. GPT-4 has
been prompted with questions generated randomly for
4 basic math tasks: integer multiplication, addition and
multiplication of fractions, and matrix multiplication.
The questions consisted of a computation, 3 or 4
proposed answers, one being true and the others false.
The prompt also included a description of the method
to get the result. GPT-4 has been asked to generate

an answer with a detailed explanation. The rejected
string is a worse interaction where the answer and
explanation have been altered to be wrong, by replacing
all occurrences of the true answer in the text generated
by GPT-4 by a randomly selected wrong answer among
the proposed answers.

• m2 reward dataset chaipas better demonstrations: This
dataset contains interactions, either in French or English,
with a human and an assistant who answers. It is a
collection of dictionaries with keys entry id, chosen and
rejected. The rejected string is the original interaction
coming from students prompting ChatGPT (GPT-4).
The chosen string is also an interaction with ChatGPT
(GPT-4) but it has been leveraged in the sense that when
prompting the model with the question, we provide it
with the answer and the explanation, and ask it to explain
the answer using the explanation. We then use this answer
along with the original question as the chosen interaction.

2) Final model

• m3 gen dataset chaipas basic math: This dataset was
derived from its m2 origin, and consists of the basic math
demonstrations where we kept the ”chosen” key.

• m3 gen dataset chaipas better demonstrations: This
dataset was derived from its m2 origin, and consists
of the basic math demonstrations where we kept the
”chosen” key.

• m3 gen dataset chaipas alpaca: This dataset comes
from the data used for the training of Alpaca [5]. It
consists of question-answer pairs and was used to align
models to follow instructions when prompted with a
question/task.

All of the above are collections of dictionaries with
question and answer keys.

B) Evaluation method

We used several metrics to evaluate the performance of our
models.

We took inspiration from the paper on Vicuna[1] to use
GPT-4 as a way to evaluate qualitatively the answers of our
models. The paper mentioned two prompts for evaluating
answers, one is meant to evaluate an answer from the model
on quality criteria, the other is meant to compare two answers
to the same question. We adapted them as follows:

Prompt for evaluating an answer on quality criteria:

3



Delabarre Luca
Faure Antonin
Nemo Fabrice

Fine-tuning T5 for question-answering task on EPFL
courses data: an attempt at replacing teaching

assistants

[System]
Please act as an impartial judge and evaluate the quality
of the response provided by an AI assistant to the
user question displayed below. Your evaluation should
consider factors such as the helpfulness, relevance,
accuracy, and level of detail of the response. Begin
your evaluation by providing a short explanation. Be as
objective as possible. After providing your explanation,
please rate the response on a scale of 1 to 10 by strictly
following this format: ”[[rating]]”.

[Question]
{question}
[Golden Answer]
{golden answer}
[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]

Prompt for comparing two answers:

[System]
Please act as an impartial judge and evaluate the quality
of the responses provided by two AI assistants to the
user question displayed below, with the golden answer
provided. You should choose the assistant that follows
the user’s instructions and answers the user’s question
better. Your evaluation should consider factors such as
the helpfulness, relevance, accuracy, and level of detail
of their responses. Begin your evaluation by comparing
the two responses and provide a short explanation. Avoid
any positional biases and ensure that the order in which
the responses were presented does not influence your
decision. Do not allow the length of the responses to
influence your evaluation. Do not favor certain names
of the assistants. Be as objective as possible. After
providing your explanation, output your final verdict by
strictly following this format: ”[[A]]” if assistant A is
better, ”[[B]]” if assistant B is better, and ”[[C]]” for a
tie.
[User question]
{question}
[Golden Answer]
answer

[The Start of Assistant A’s Answer]
{answera}
[The End of Assistant A’s Answer]
[The Start of Assistant B’s Answer]
{answerb}
[The End of Assistant B’s Answer]

The first prompt has been used to evaluate the results of
our models on the 100 prompts that were provided, with
a grade on a scale from 1 to 10, determined by GPT-4.
Compared to the prompts from the paper about Vicuna, we

decided to include the ”golden” answer that was provided
with the questions in prompts.json, with the hope that it
can help the model figure out whether the generated answer
is factually correct or not.

The second prompt has been used to compare our models
with three baseline models: T5, GPT-2, and GPT-4. We
computed the share of answers that were deemed better than
the baseline by GPT-4, to check whether our training has
been helpful at specializing our models to the task we want.

In addition to a qualitative evaluation done with GPT-4, we
performed a quantitative evaluation with commonly used simi-
larity scores: BLEU, ROUGE, and BERTScore. We computed
them for each model and question, with the ”golden” answer,
provided in prompts.json, as reference and the output of
the model as hypothesis.

Finally, we also manually assessed the quality of some of
the answers.

C) Baselines
We used a couple of different baselines to compare

against our model’s performance. The first was the T5 model
before any fine-tuning or reinforcement learning, providing
a measure of the ’raw’ model’s capabilities. The second was
the performance of the model after supervised fine-tuning
but before reinforcement learning, providing a basis for
understanding the incremental improvements brought about
by our RL strategies. We also compared the results to GPT-2
and GPT-4 models results.

D) Experimental details
1) Reward model

Our experiments involved testing a variety of configurations
to optimize the performance of our model. We experimented
with different reward models, namely ”OpenAssistant/reward-
model-deberta-v3-base”, ”OpenAssistant/reward-model-
deberta-v3-large”, and “microsoft-deberta-v3-xsmall”.

These models were incorporated with two types of mapping
layers: a Linear mapping and a Multi-Layer Perceptron (MLP)
mapping, as shown on Figure 2, with a hidden layer (output
size → 64), ReLU activation, and a final layer (64 → 1)
followed by a sigmoid activation.

Each of the models were trained using these different loss
functions:

• Hinge loss:

max(0,margin− rewardchosen+ rewardrejected) (1)

• Binary Cross-Entropy loss:

− log(σ(rewardchosen − rewardrejected)) (2)

4

https://huggingface.co/OpenAssistant/reward-model-deberta-v3-base
https://huggingface.co/OpenAssistant/reward-model-deberta-v3-base
https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large
https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large
https://huggingface.co/microsoft/deberta-v3-xsmall


Delabarre Luca
Faure Antonin
Nemo Fabrice

Fine-tuning T5 for question-answering task on EPFL
courses data: an attempt at replacing teaching

assistants

The training was done using Adam optimizer with learning
rate of 1e-4, in one epoch with a batch size of 4 and a 90%
training split.

In terms of model size, the ”OpenAssistant/reward-model-
deberta-v3-large” model was particularly large and resource-
intensive, which resulted in slower training times, while on
the other hand the ”microsoft-deberta-v3-xsmall” model, with
its smaller size, showed significant improvements in training
time.

Fig. 2: Reward model with MLP reward head architecture

2) Model fine-tuning

We fine-tuned the model using a 90-10 train-test split with
an AdamW optimizer. The optimizer was kept to default
settings that is learningrate = 10−4.

3) Reinforcement learning

For the reinforcement learning phase, we tested the use of
PPO algorithm with 1 epoch and 3 PPO epochs with a batch
size of 6. Our optimization scheme was based on the Adam op-
timizer with a learning rate of 1e-4, and we trained on 90% of
”m3 gen dataset chaipas better demonstrations”. We also
experimented with the ”N” sampling strategy using a param-
eter of n=3, replacing the PPO epochs in this context.

E) Results
1) Reward Model

We report the performance of our various attempts of
creating our reward model in Table I. For our final model, we
used the large open-assistant model with a final MLP layer,
trained on demonstrations with a hinge loss.

2) Fine-tuned models

Here are our results for the evaluation methods stated above.

Average grade (on a 1-10 scale) according to GPT-4
Model name Grade
Baseline GPT-2 1.708
Baseline T5 3.667
Baseline GPT-4 7.385
valhalla T5 demonstrations 2.146
valhalla T5 demonstrations math 1.635
valhalla T5 alpaca 1.667
valhalla T5 alpaca demonstrations 2.031
T5 demonstrations 2.063
T5 demonstrations math 1.667
T5 alpaca 1.573
T5 alpaca demonstrations 1.823
T5 alpaca demonstrations NSampling large hinge 2.052
T5 alpaca demonstrations PPO large hinge 2.010

Model name Grade
Answers that were better than baseline T5

valhalla T5 demonstrations 51.0%
valhalla T5 demonstrations math 33.3%
valhalla T5 alpaca 25.0%
valhalla T5 alpaca demonstrations 40.6%
T5 demonstrations 51.0%
T5 demonstrations math 41.7%
T5 alpaca 21.9%
T5 alpaca demonstrations 38.5%
T5 alpaca demonstrations NSampling large hinge 33.3%
T5 alpaca demonstrations PPO large hinge 30.2%

Answers that were better than baseline GPT-2
valhalla T5 demonstrations 58.3%
valhalla T5 demonstrations math 56.3%
valhalla T5 alpaca 47.9%
valhalla T5 alpaca demonstrations 50.0%
T5 demonstrations 55.2%
T5 demonstrations math 57.3%
T5 alpaca 43.8%
T5 alpaca demonstrations 49.0%
T5 alpaca demonstrations NSampling large hinge 49.0%
T5 alpaca demonstrations PPO large hinge 47.9%

Answers that were better than baseline GPT-4
valhalla T5 demonstrations 9.3%
valhalla T5 demonstrations math 4.3%
valhalla T5 alpaca 6.3%
valhalla T5 alpaca demonstrations 4.4%
T5 demonstrations 5.3%
T5 demonstrations math 4.2%
T5 alpaca 3.1%
T5 alpaca demonstrations 4.4%
T5 alpaca demonstrations NSampling large hinge 6.3%
T5 alpaca demonstrations PPO large hinge 6.3%

The various scores we computed are listed on Table II on
Page 6.

V. ANALYSIS

We can see that the model that performed the best according
to GPT-4, given the prompt, is unsurprisingly baseline GPT-4.
Then the second model that performed the best is baseline
T5. This surprised us, when we manually read its outputs and
compared it to the models we got fine-tuning it, it was clear
that baseline T5 provides less convincing outputs, sometimes
simply copying the question or some keywords. We think
that ChatGPT (GPT-4) might be interpreting such answers as
more qualitative than they really are.

Also, the results show that GPT-4 is not convinced by the
outputs of our models, average grades are very low. This
method has limits as it relies on an evaluation done by a
LLM that still has flaws, we could have gotten better results
with human evaluation.

The second evaluation method shows that our models are
performing overall better than baseline GPT-2 and worse
than baseline T5 and GPT-4 according to the evaluation done
with GPT-4. We were not surprised by the results of the
comparisons with GPT-2 and GPT-4, but the results of the
comparison with baseline T5 again go against the impression
we got reading manually the outputs. This evaluation method
has the same flaws as the previous one.

5



Delabarre Luca
Faure Antonin
Nemo Fabrice

Fine-tuning T5 for question-answering task on EPFL
courses data: an attempt at replacing teaching

assistants

Base Model Reward Head Training Data Testing Data Loss Accuracy (Test)
OA Base Linear - Demonstrations - 7%
OA Base MLP - Demonstrations - 60%
OA Base MLP Demonstrations Demonstrations Cross Entropy 61.6%
OA Base Linear Demonstrations Demonstrations Cross Entropy 37.5%
XSmall Linear Demonstrations Demonstrations Cross Entropy 99.1%

OA Large MLP - Demonstrations - 54.2%
OA Large MLP Demonstrations Demonstrations Cross Entropy 0%
OA Large MLP Demonstrations Demonstrations Hinge 71.7%

TABLE I: Results for the reward models training

Model (training dataset) (RL) (Reward model) (Loss) BLEU ROUGE-1 ROUGE-2 BERT-SCORES
P R F P R F P R F

Baseline GPT-4 28.8% 35.0% 51.2% 38.1% 35.0% 51.2% 38.1% 0.499 0.629 0.552
Baseline GPT-2 1.0% 3.1% 23.3% 4.1% 3.1% 23.3% 4.1% 0.344 0.514 0.402

Baseline T5 1.5% 8.2% 7.3% 6.7% 8.2% 7.3% 6.7% 0.491 0.584 0.529
valhalla T5 demonstrations 9.3% 4.7% 16.7% 6.5% 4.7% 16.7% 6.5% 0.372 0.560 0.437

valhalla T5 demonstrations math 8.1% 4.1% 16.0% 5.8% 4.1% 16.0% 5.8% 0.377 0.562 0.442
valhalla T5 alpaca 1.0% 8.8% 7.3% 6.1% 8.8% 7.3% 6.1% 0.502 0.576 0.530

valhalla T5 alpaca demonstrations 0.9% 4.6% 16.7% 6.3% 4.6% 16.7% 6.3% 0.378 0.566 0.443
T5 demonstrations 1.0% 4.9% 18.9% 6.8% 4.9% 18.9% 6.8% 0.369 0.562 0.435

T5 demonstrations math 0.9% 4.1% 18.9% 6.0% 4.1% 18.9% 6.0% 0.372 0.561 0.437
T5 alpaca 1.0% 7.1% 8.1% 6.1% 7.1% 8.1% 6.1% 0.479 0.570 0.511

T5 alpaca demonstrations 0.9% 4.6% 16.0% 6.3% 4.6% 16.0% 6.3% 0.379 0.563 0.443
T5 alpaca demonstrations NSampling large hinge 1.0% 4.8% 15.7% 6.4% 4.8% 15.7% 6.4% 0.380 0.562 0.444

T5 alpaca demonstrations PPO large hinge 1.0% 4.8% 15.7% 6.4% 4.8% 15.7% 6.4% 0.380 0.562 0.444

TABLE II: Metrics for the different models trained

About the various metrics reported, we observe that: (1) Our
models generally have poor overlap with the gold answers.
This is partly due to gold answers having no explanation,
whereas our models were trained to provide an explanation.
BLEU score maxes-out at only about 10% for the valhalla
T5 model fine-tuned on demonstrations. (2) ROUGE 1 and 2
scores also show the same trend, but we can still see a clear
difference between the recall ROUGE-1 and ROUGE-2 score
of models that were trained on demonstrations against model
that were not. We observe a 10% increase in these metrics
when the model was trained using the demonstrations we
collected. (3) Finally, BERTScores are not very conclusive
but still show that the best model might be valhalla T5 trained
on the Alpaca dataset. We think that this model is the best
one when it comes to question comprehension and producing
an answer, but upon manual inspection of the answers, though
better constructed, were of poor content quality.

For our final model, we used valhalla T5 demonstrations.
Despite not using reinforcment learning, this pretrained model
further fine-tuned on the demonstrations performed better
across the board according to ChatGPT (GPT-4), and also
according to our human evaluation.

A) Reward model
About the performance, we think that the model ”XSmall”

with very high accuracies, as shown in Table I, is finding some
kind of shortcut in our data such as the length of non-pad
token or identifying some recurring token in the better/worse
demonstrations. Thus, we rather used the OpenAssistant large
model for the reinforcement learning phase as it came second

with a more realistic accuracy. We also observed that the
external data might not be a good fit for this task as its
distribution might be too far from that of our demonstrations.
During our experiments using the basic math dataset, the
reward models obtained almost always 100% accuracy on the
test set. We think that this is due to the model using other
features such as length of the answer to create a suitable
reward. This is confirmed by the very low accuracy of the
model on a different distribution of question-answer pairs.
Given the low robustness of the models trained on this math
dataset, we excluded it from our following experiments.

B) Reinforcement learning
We encountered numerous challenges while implementing

reinforcement learning techniques to our model. The main
challenge we faced is that it is hard to grasp what the
”true” answer is for a given question and which score
one should assign to it. While training our reward model,
reward values to different answers were generally very close.
Another problem is that we used the same data used during
fine-tuning, possibly over-fitting its distribution.

Overall, we are conscious that our results are less than
ideal. Given that this is our first attempt at such a task and
the short two weeks time-frame in which this project had to
be finalized, we do think it still remains a solid attempt at
solving such a complex challenge.

6



Delabarre Luca
Faure Antonin
Nemo Fabrice

Fine-tuning T5 for question-answering task on EPFL
courses data: an attempt at replacing teaching

assistants

VI. CONCLUSION

We successfully implemented our own assistant using both
fine-tuning and reinforcement learning. We have learned how
difficult such a task can be and how computationally intensive
reinforcement learning is. We have also observed that the qual-
ity of the reinforcement learning phase also greatly depends
on the quality of the reward model itself.

Human evaluation clearly shows that our final model is
an improvement over the original T5. There is still a lot
of work to be done for the model to produce high quality
answers. We do think the main limitations of our work reside
in the quality and quantity of data that was collected, as we
only used about 1.2k questions and answer pairs and these
questions were not of the highest quality.

VII. FUTURE WORK

Recently Microsoft published a new model Orca [2] where
they develop three models: a teacher model, a student model
and a data generator. This approach could be interesting to
develop further for our case study.

Another path to explore could be the use Tree of Toughts
(ToT)[7] reasoning, which significantly enhances language
models’ problem-solving abilities, for the training of our
models

VIII. TEAM CONTRIBUTIONS

A) Milestone 1
This milestone was mostly individual. We schduled a meet-

ing to share our ideas on the project plan and wrote it together.

B) Milestone 2
Luca:

• Collected the better demonstrations using GPT-4
• Created the first, second, third and fourth reward model

notebook
• Found microsoft/deberta-v3-xsmall model
• Trained base model, GPT-2, xsmall models
• Found, downloaded and adapted external source of data
• Introduced cross entropy loss from Instruct-GPT
• Trained several models

Antonin:
• Introduced margin loss
• Trained final models

Fabrice:
• Created math demonstrations and prompted GPT-4

C) Milestone 3
Luca:

• Transform milestone 2 data to be used in milestone 3
• Setup model fine-tuning
• Found and adapted Alpaca dataset
• Fine-tuned T5 and valhalla/t5-base-e2e-qg in various con-

figurations

Antonin:
• Trained new reward models with OpenAssistant large
• Introduced PPO and N sampling
• Trained the RL phase

Fabrice:
• Model evaluation through ROUGE, BLEU, BERTScores

(quantitative evaluation)
• Answer quality evaluation via ChatGPT (GPT-4): re-

search for prompt-engineering to do answer grading and
comparison with baseline models

REFERENCES

[1] Wei-Lin Chiang et al. Vicuna: An Open-Source Chatbot
Impressing GPT-4 with 90%* ChatGPT Quality. Mar.
2023. URL: https://lmsys.org/blog/2023-03-30-vicuna/.

[2] Subhabrata Mukherjee et al. Orca: Progressive Learning
from Complex Explanation Traces of GPT-4. 2023. arXiv:
2306.02707 [cs.CL].

[3] Long Ouyang et al. Training language models to follow
instructions with human feedback. 2022. arXiv: 2203 .
02155 [cs.CL].

[4] Colin Raffel et al. Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. 2020.
arXiv: 1910.10683 [cs.LG].

[5] Rohan Taori et al. Alpaca: A Strong, Replicable
Instruction-Following Model. 2022. URL: https : / /crfm.
stanford.edu/2023/03/13/alpaca.html.

[6] Jules White et al. A Prompt Pattern Catalog to Enhance
Prompt Engineering with ChatGPT. 2023. arXiv: 2302.
11382 [cs.SE].

[7] Shunyu Yao et al. Tree of Thoughts: Deliberate Problem
Solving with Large Language Models. 2023. arXiv: 2305.
10601 [cs.CL].

7

https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/1910.10683
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601

	Introduction
	Related work
	Approach
	Model Architecture
	Supervised Fine-tuning
	Reward Model
	Reinforcement Learning
	Proximal Policy Optimization (PPO)
	N Sampling
	Comparing Actions with Ground Truth


	Experiments
	Data
	Reward model
	Final model

	Evaluation method
	Baselines
	Experimental details
	Reward model
	Model fine-tuning
	Reinforcement learning

	Results
	Reward Model
	Fine-tuned models


	Analysis
	Reward model
	Reinforcement learning

	Conclusion
	Future work
	Team contributions
	Milestone 1
	Milestone 2
	Milestone 3


